Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ball, J. (Ed.)In materials that undergo martensitic phase transformation, distinct elastic phases often form layered microstructures — a phenomenon known as twinning. In some settings the volume fractions of the phases vary macroscopically; this has been seen, in particular, in experiments involving the bending of a bar. We study a two-dimensional (2D) model problem of this type, involving two geometrically nonlinear phases with a single rank-one connection. We adopt a variational perspective, focusing on the minimization of elastic plus surface energy. To get started, we show that twinning with variable volume fraction must occur when bending is imposed by a Dirichlet-type boundary condition. We then turn to paper’s main goal, which is to determine how the minimum energy scales with respect to the surface energy density and the transformation strain. Our analysis combines ansatz-based upper bounds with ansatz-free lower bounds. For the upper bounds we consider two very different candidates for the microstructure: one that involves self-similar refinement of its length scale near the boundary, and another based on piecewise-linear approximation with a single length scale. Our lower bounds adapt methods previously introduced by Chan and Conti to address a problem involving twinning with constant volume fraction. The energy minimization problem considered in this paper is not intended to model twinning with variable volume fraction involving two martensite variants; rather, it provides a convenient starting point for the development of a mathematical toolkit for the study of twinning with variable volume fraction.more » « less
-
Abstract Motivated by the physics literature on “photonic doping” of scatterers made from “epsilon‐near‐zero” (ENZ) materials, we consider how the scattering of time‐harmonic TM electromagnetic waves by a cylindrical ENZ region is affected by the presence of a “dopant” in which the dielectric permittivity is not near zero. Mathematically, this reduces to analysis of a 2D Helmholtz equation with a piecewise‐constant, complex valued coefficientathat is nearly infinite (say with ) in . We show (under suitable hypotheses) that the solutionudepends analytically on δ near 0, and we give a simple PDE characterization of the terms in its Taylor expansion. For the application to photonic doping, it is the leading‐order corrections in δ that are most interesting: they explain why photonic doping is only mildly affected by the presence of losses, and why it is seen even at frequencies where the dielectric permittivity is merely small. Equally important: our results include a PDE characterization of the leading‐order electric field in the ENZ region as , whereas the existing literature on photonic doping provides only the leading‐order magnetic field.more » « less
An official website of the United States government
